
Treasure Hunt
+------------------------+
¦ 34 ¦ 21 ¦ 32 ¦ 41 ¦ 25 ¦
+----+----+----+----+----¦
¦ 14 ¦ 42 ¦ 43 ¦ 14 ¦ 31 ¦
+----+----+----+----+----¦
¦ 54 ¦ 45 ¦ 52 ¦ 42 ¦ 23 ¦
+----+----+----+----+----¦
¦ 33 ¦ 15 ¦ 51 ¦ 31 ¦ 35 ¦
+----+----+----+----+----¦
¦ 21 ¦ 52 ¦ 33 ¦ 13 ¦ 23 ¦
+------------------------+

You are going to write a program to explore the above table for a treasure. The values in the table are 
clues. Each cell contains a number between 11 and 55, where the ten’s digit represents the row number 
and the unit’s digit represents the column number of the cell containing the next clue. Starting with the 
upper left corner (at 1,1), use the clues to guide your search through the table - (the first three clues are 
11, 55, 15). The treasure is a cell whose value is the same as its coordinates. Your program must first 
read in the treasure map data into a 5 by 5 array.

Preferred Languages
Python, Groovy, Scala, Ruby, (Vanilla) Javascript

Input Format
Input contains five lines each containing five space separated integers.

Output Format
If the treasure is found, your program should output the index (row, column) of cells it visits during its 
search for treasure (separated by a single space). Cells must be separated by a newline “\n”.
If there is no treasure, print “NO TREASURE”

Implementation
Write two different implementations. The first should use a functional programming approach 
(closures, native datastructures). The second implementation should be implemented in an object-
oriented way (object models, simple oo patterns). One of the implementations should be coded with 
recursion, the other without recursion.
For non javascript: Read input from STDIN. Print output to STDOUT. Do not use external libraries.
For Javascript: Input is a list of tuples (array of arrays), while the ouput can be logged to the console.

Sample Input
55 14 25 52 21
44 31 11 53 43
24 13 45 12 34
42 22 43 32 41
51 23 33 54 15

Sample Output
1 1
5 5



1 5
2 1
4 4
3 2
1 3
2 5
4 3


	Treasure Hunt

